3.364 \(\int \frac {\sqrt {d+e x^2}}{x^2 (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=291 \[ -\frac {c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \tan ^{-1}\left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{a \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}-\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{a \sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}-\frac {\sqrt {d+e x^2}}{a x} \]

[Out]

-(e*x^2+d)^(1/2)/a/x-c*arctan(x*(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^
(1/2))*(d+(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))/a/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/
2)-c*arctan(x*(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(d+(2*a*e-b
*d)/(-4*a*c+b^2)^(1/2))/a/(b+(-4*a*c+b^2)^(1/2))^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.67, antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {1295, 264, 1692, 377, 205} \[ -\frac {c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \tan ^{-1}\left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{a \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}-\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{a \sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}-\frac {\sqrt {d+e x^2}}{a x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x^2]/(x^2*(a + b*x^2 + c*x^4)),x]

[Out]

-(Sqrt[d + e*x^2]/(a*x)) - (c*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c
])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(a*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt
[b^2 - 4*a*c])*e]) - (c*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*
x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(a*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + Sqrt[b^2 -
 4*a*c])*e])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1295

Int[(((f_.)*(x_))^(m_)*((d_.) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Dist[d/
a, Int[(f*x)^m*(d + e*x^2)^(q - 1), x], x] - Dist[1/(a*f^2), Int[((f*x)^(m + 2)*(d + e*x^2)^(q - 1)*Simp[b*d -
 a*e + c*d*x^2, x])/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] &&  !In
tegerQ[q] && GtQ[q, 0] && LtQ[m, 0]

Rule 1692

Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandInteg
rand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x^2] && NeQ[b
^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx &=-\frac {\int \frac {b d-a e+c d x^2}{\sqrt {d+e x^2} \left (a+b x^2+c x^4\right )} \, dx}{a}+\frac {d \int \frac {1}{x^2 \sqrt {d+e x^2}} \, dx}{a}\\ &=-\frac {\sqrt {d+e x^2}}{a x}-\frac {\int \left (\frac {c d+\frac {c (b d-2 a e)}{\sqrt {b^2-4 a c}}}{\left (b-\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}}+\frac {c d-\frac {c (b d-2 a e)}{\sqrt {b^2-4 a c}}}{\left (b+\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}}\right ) \, dx}{a}\\ &=-\frac {\sqrt {d+e x^2}}{a x}-\frac {\left (c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\left (b+\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{a}-\frac {\left (c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\left (b-\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{a}\\ &=-\frac {\sqrt {d+e x^2}}{a x}-\frac {\left (c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{b+\sqrt {b^2-4 a c}-\left (-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{a}-\frac {\left (c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{b-\sqrt {b^2-4 a c}-\left (-2 c d+\left (b-\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{a}\\ &=-\frac {\sqrt {d+e x^2}}{a x}-\frac {c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{a \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{a \sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.32, size = 4644, normalized size = 15.96 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[d + e*x^2]/(x^2*(a + b*x^2 + c*x^4)),x]

[Out]

-(Sqrt[d + e*x^2]/(a*x)) - (-1/2*(b*d*(Log[Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + x]/Sqrt[d + ((-(b/c) -
 Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d - Sqrt[2]*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) -
 Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(Sqrt[2]*c*Sqrt[
-(b/c) - Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) - Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]
/c]/Sqrt[2])*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) + (
Sqrt[b^2 - 4*a*c]*d*(Log[Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + x]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]
/c)*e)/2] - Log[2*d - Sqrt[2]*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]
/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(2*Sqrt[2]*c*Sqrt[-(b/c) - Sqrt[b^
2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) - Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(-(
Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) + (a*e*(Log[Sqrt[-(
b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + x]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d - Sqrt[2]*Sq
rt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[
d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(Sqrt[2]*c*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqr
t[b^2 - 4*a*c]/c]/Sqrt[2]) - Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]
/Sqrt[2]) + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) + (b*d*(Log[-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt
[2]) + x]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d + Sqrt[2]*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c
]*e*x + 2*Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c
]/c)*e)/2]))/(2*Sqrt[2]*c*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] - Sqr
t[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + Sqrt[-(b/c) + Sqrt[b^2
- 4*a*c]/c]/Sqrt[2])) - (Sqrt[b^2 - 4*a*c]*d*(Log[-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + x]/Sqrt[d +
((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d + Sqrt[2]*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d +
((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(2*Sqr
t[2]*c*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] - Sqrt[-(b/c) + Sqrt[b^2
 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]
)) - (a*e*(Log[-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + x]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/
2] - Log[2*d + Sqrt[2]*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/
2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) - Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(Sqrt[2]*c*Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c
]/c]*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] - Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) -
Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) - (b*d*(Log[Sqrt[-(b/c) + Sqrt[b^2
 - 4*a*c]/c]/Sqrt[2] + x]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d - Sqrt[2]*Sqrt[-(b/c) + Sqr
t[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) +
Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(2*Sqrt[2]*c*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c
]/c]/Sqrt[2]) - Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] - Sqrt
[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) - (Sqrt[b^2 - 4*a*c]*d*(Log[Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2
] + x]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d - Sqrt[2]*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*e
*x + 2*Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c
)*e)/2]))/(2*Sqrt[2]*c*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) - Sqr
t[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] - Sqrt[-(b/c) + Sqrt[b^2
- 4*a*c]/c]/Sqrt[2])) + (a*e*(Log[Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + x]/Sqrt[d + ((-(b/c) + Sqrt[b^2
 - 4*a*c]/c)*e)/2] - Log[2*d - Sqrt[2]*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) + Sqrt[b^2
 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(Sqrt[2]*c*Sqrt[-(b/c) +
Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) - Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[
2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] - Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) + (b*d*(Log[-(S
qrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + x]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d + Sqr
t[2]*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]
]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(2*Sqrt[2]*c*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b
/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*
a*c]/c]/Sqrt[2] + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) + (Sqrt[b^2 - 4*a*c]*d*(Log[-(Sqrt[-(b/c) + Sqr
t[b^2 - 4*a*c]/c]/Sqrt[2]) + x]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d + Sqrt[2]*Sqrt[-(b/c)
 + Sqrt[b^2 - 4*a*c]/c]*e*x + 2*Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b
/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]))/(2*Sqrt[2]*c*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqrt[b^2 -
 4*a*c]/c]/Sqrt[2]) + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]
+ Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])) - (a*e*(Log[-(Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + x]/
Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2] - Log[2*d + Sqrt[2]*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*e*x + 2*
Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]*Sqrt[d + e*x^2]]/Sqrt[d + ((-(b/c) + Sqrt[b^2 - 4*a*c]/c)*e)/2]
))/(Sqrt[2]*c*Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/c]*(-(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2]) + Sqrt[-(b/c)
+ Sqrt[b^2 - 4*a*c]/c]/Sqrt[2])*(Sqrt[-(b/c) - Sqrt[b^2 - 4*a*c]/c]/Sqrt[2] + Sqrt[-(b/c) + Sqrt[b^2 - 4*a*c]/
c]/Sqrt[2])))/a

________________________________________________________________________________________

fricas [B]  time = 5.06, size = 2402, normalized size = 8.25 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-1/4*(sqrt(1/2)*a*x*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e + (a^3*b^2 - 4*a^4*c)*sqrt((a^2*b^2*e^2 + (
b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log((2*a^
2*b*c*d*e + (a^3*b^2*c - 4*a^4*c^2)*d*x^2*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2
*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - 2*(a*b^2*c - a^2*c^2)*d^2 + (4*a^2*b*c*e^2 + (b^3*c - a*b*c^2)*d^2 - (5*a*b^
2*c - 4*a^2*c^2)*d*e)*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^4*b^3 - 4*a^5*b*c)*x*sqrt((a^2*b^2*e^2 + (b^4 - 2*
a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - ((a*b^4 - 5*a^2*b^2*c + 4*a^3*c^2)*d
- (a^2*b^3 - 4*a^3*b*c)*e)*x)*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e + (a^3*b^2 - 4*a^4*c)*sqrt((a^2*b
^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))
)/x^2) - sqrt(1/2)*a*x*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e + (a^3*b^2 - 4*a^4*c)*sqrt((a^2*b^2*e^2
+ (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log((2
*a^2*b*c*d*e + (a^3*b^2*c - 4*a^4*c^2)*d*x^2*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 -
a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - 2*(a*b^2*c - a^2*c^2)*d^2 + (4*a^2*b*c*e^2 + (b^3*c - a*b*c^2)*d^2 - (5*a
*b^2*c - 4*a^2*c^2)*d*e)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^4*b^3 - 4*a^5*b*c)*x*sqrt((a^2*b^2*e^2 + (b^4 -
 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - ((a*b^4 - 5*a^2*b^2*c + 4*a^3*c^2)
*d - (a^2*b^3 - 4*a^3*b*c)*e)*x)*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e + (a^3*b^2 - 4*a^4*c)*sqrt((a^
2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*
c)))/x^2) - sqrt(1/2)*a*x*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e - (a^3*b^2 - 4*a^4*c)*sqrt((a^2*b^2*e
^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log
((2*a^2*b*c*d*e - (a^3*b^2*c - 4*a^4*c^2)*d*x^2*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3
 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - 2*(a*b^2*c - a^2*c^2)*d^2 + (4*a^2*b*c*e^2 + (b^3*c - a*b*c^2)*d^2 - (
5*a*b^2*c - 4*a^2*c^2)*d*e)*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^4*b^3 - 4*a^5*b*c)*x*sqrt((a^2*b^2*e^2 + (b^
4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) + ((a*b^4 - 5*a^2*b^2*c + 4*a^3*c
^2)*d - (a^2*b^3 - 4*a^3*b*c)*e)*x)*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e - (a^3*b^2 - 4*a^4*c)*sqrt(
(a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a
^4*c)))/x^2) + sqrt(1/2)*a*x*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e - (a^3*b^2 - 4*a^4*c)*sqrt((a^2*b^
2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*
log((2*a^2*b*c*d*e - (a^3*b^2*c - 4*a^4*c^2)*d*x^2*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*
b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - 2*(a*b^2*c - a^2*c^2)*d^2 + (4*a^2*b*c*e^2 + (b^3*c - a*b*c^2)*d^2
- (5*a*b^2*c - 4*a^2*c^2)*d*e)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^4*b^3 - 4*a^5*b*c)*x*sqrt((a^2*b^2*e^2 +
(b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) + ((a*b^4 - 5*a^2*b^2*c + 4*a^
3*c^2)*d - (a^2*b^3 - 4*a^3*b*c)*e)*x)*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e - (a^3*b^2 - 4*a^4*c)*sq
rt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 -
4*a^4*c)))/x^2) + 4*sqrt(e*x^2 + d))/(a*x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [C]  time = 0.03, size = 272, normalized size = 0.93 \[ \frac {\sqrt {e}\, \ln \left (-\sqrt {e}\, x +\sqrt {e \,x^{2}+d}\right )}{a}+\frac {\sqrt {e}\, \ln \left (\sqrt {e}\, x +\sqrt {e \,x^{2}+d}\right )}{a}+\frac {\sqrt {e}\, \left (\RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right )^{2} c d +c \,d^{3}+2 \left (-2 a \,e^{2}+2 d e b -c \,d^{2}\right ) \RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right )\right ) \ln \left (-\RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right )+\left (-\sqrt {e}\, x +\sqrt {e \,x^{2}+d}\right )^{2}\right )}{2 a \left (\RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right )^{3} c +3 \RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right )^{2} b e -3 \RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right )^{2} c d +8 \RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right ) a \,e^{2}-4 \RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right ) b d e +3 \RootOf \left (\textit {\_Z}^{4} c +c \,d^{4}+\left (4 b e -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 b \,d^{2} e -4 c \,d^{3}\right ) \textit {\_Z} \right ) c \,d^{2}+b \,d^{2} e -c \,d^{3}\right )}+\frac {\sqrt {e \,x^{2}+d}\, e x}{a d}-\frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}}}{a d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x)

[Out]

-1/a/d/x*(e*x^2+d)^(3/2)+1/a*e/d*x*(e*x^2+d)^(1/2)+1/a*e^(1/2)*ln(e^(1/2)*x+(e*x^2+d)^(1/2))+1/2/a*e^(1/2)*sum
((_R^2*c*d+2*(-2*a*e^2+2*b*d*e-c*d^2)*_R+c*d^3)/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2
+b*d^2*e-c*d^3)*ln(-_R+(-e^(1/2)*x+(e*x^2+d)^(1/2))^2),_R=RootOf(_Z^4*c+c*d^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b
*d*e+6*c*d^2)*_Z^2+(4*b*d^2*e-4*c*d^3)*_Z))+1/a*e^(1/2)*ln(-e^(1/2)*x+(e*x^2+d)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x^{2} + d}}{{\left (c x^{4} + b x^{2} + a\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x^2 + d)/((c*x^4 + b*x^2 + a)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {e\,x^2+d}}{x^2\,\left (c\,x^4+b\,x^2+a\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^(1/2)/(x^2*(a + b*x^2 + c*x^4)),x)

[Out]

int((d + e*x^2)^(1/2)/(x^2*(a + b*x^2 + c*x^4)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d + e x^{2}}}{x^{2} \left (a + b x^{2} + c x^{4}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(1/2)/x**2/(c*x**4+b*x**2+a),x)

[Out]

Integral(sqrt(d + e*x**2)/(x**2*(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________